Comparative genomics of DtxR family regulons for metal homeostasis in Archaea.

نویسندگان

  • Semen A Leyn
  • Dmitry A Rodionov
چکیده

The DtxR family consists of metal-dependent transcription factors (DtxR-TFs) that regulate the expression of genes involved in metal homeostasis in the cell. The majority of characterized DtxR-TFs belong to Bacteria. In the current work, we applied a comparative genomics approach to predict DNA-binding sites and reconstruct regulons for DtxR-TFs in Archaea. As a result, we inferred 575 candidate binding sites for 139 DtxR-TFs in 77 genomes from 15 taxonomic orders. Novel DNA motifs of archaeal DtxR-TFs that have a common palindromic structure were classified into 10 distinct groups. By combining functional regulon reconstructions with phylogenetic analysis, we selected 28 DtxR-TF clades and assigned them metal specificities and regulator names. The reconstructed FetR (ferrous iron), MntR (manganese), and ZntR (zinc) regulons largely contain known or putative metal uptake transporters from the FeoAB, NRAMP, ZIP, and TroA families. A novel family of putative iron transporters (named Irt), including multiple FetR-regulated paralogs, was identified in iron-oxidizing Archaea from the Sulfolobales order. The reconstructed DtxR-TF regulons were reconciled with available transcriptomics data in Archaeoglobus, Halobacterium, and Thermococcus spp.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Transcriptional Regulons for Autotrophic Cycle Genes in Crenarchaeota.

UNLABELLED Autotrophic microorganisms are able to utilize carbon dioxide as their only carbon source, or, alternatively, many of them can grow heterotrophically on organics. Different variants of autotrophic pathways have been identified in various lineages of the phylum Crenarchaeota. Aerobic members of the order Sulfolobales utilize the hydroxypropionate-hydroxybutyrate cycle (HHC) to fix ino...

متن کامل

A novel bifunctional transcriptional regulator of riboflavin metabolism in Archaea

Riboflavin (vitamin B2) is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide, which are essential coenzymes in all free-living organisms. Riboflavin biosynthesis in many Bacteria but not in Archaea is controlled by FMN-responsive riboswitches. We identified a novel bifunctional riboflavin kinase/regulator (RbkR), which controls riboflavin biosynthesis and transport ge...

متن کامل

Structural analysis and insight into metal-ion activation of the iron-dependent regulator from Thermoplasma acidophilum.

The iron-dependent regulator (IdeR) is a metal ion-activated transcriptional repressor that regulates the expression of genes encoding proteins involved in iron uptake to maintain metal-ion homeostasis. IdeR is a functional homologue of the diphtheria toxin repressor (DtxR), and both belong to the DtxR/MntR family of metalloregulators. The structure of Fe(2+)-bound IdeR (TA0872) from Themoplasm...

متن کامل

A transcription network of interlocking positive feedback loops maintains intracellular iron balance in archaea

Iron is required for key metabolic processes but is toxic in excess. This circumstance forces organisms across the tree of life to tightly regulate iron homeostasis. In hypersaline lakes dominated by archaeal species, iron levels are extremely low and subject to environmental change; however, mechanisms regulating iron homeostasis in archaea remain unclear. In previous work, we demonstrated tha...

متن کامل

Comparative genomics and evolution of regulons of the LacI-family transcription factors

DNA-binding transcription factors (TFs) are essential components of transcriptional regulatory networks in bacteria. LacI-family TFs (LacI-TFs) are broadly distributed among certain lineages of bacteria. The majority of characterized LacI-TFs sense sugar effectors and regulate carbohydrate utilization genes. The comparative genomics approaches enable in silico identification of TF-binding sites...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 197 3  شماره 

صفحات  -

تاریخ انتشار 2015